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ABSTRACT
The field of Machine Learning Operations (MLOps) has grown with time due to increasing number of ML
application deployed worldwide. Over the years, people have developed many MLOps platforms(both open
and closed source) which can manage entire lifecycle of an ML based application. These systems can utilize
heterogeneity in specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs to train and serve ML
models. These accelerators exhibit heterogeneous performance behavior variety of model architectures. Being an
emerging field, MLOps is rapidly gaining momentum amongst Data Scientists, ML Engineers and AI enthusiasts.
However, the burden of choosing right combination of ML task and deployment backend to optimize efficiency,
cost and energy falls on users of these systems, which is a big challenge for target users. In this work, we present
DOPE-ML, a learning based framework which automates choice of deployment backends for wide variety of ML
tasks, while taking into consideration user priorities. As an end goal, we wish to remove burden of developers
using any MLOPs systems to choose deployment backends across wide variety of tasks.

1 INTRODUCTION

Machine learning operations (MLOps) are DevOps for ma-
chine learning processes. MLOps enables data scientists
to collaborate and increase the pace of delivery and quality
of model development through monitoring, validation, and
governance of machine learning models. This is equivalent
to how DevOps helps software engineers develop, test, and
deploy software quicker and with fewer defects. MLOps
supports the data science life cycle just as DevOps supports
the application development life cycle. As such, MLOps
is based on the principles of DevOps. Some examples of
such systems are MLflow, Seldon-Core, Bento-ML, Kube-
Flow, MLRun, ZenFlow, etc. These platforms provide API
for integrating a variety of modeling frameworks like Py-
Torch, TensorFlow, Java, Sklearn, Keras, SHAP, Fastai etc,
and provide a unified approach to manage these modeling
frameworks. Further, these MLOps frameworks can also
provide the ability to deploy these models on a wide vari-
ety of backend and device infrastructures including VMs,
Dockers, CPUs, GPUs, eGPUs, Cloud services, and FAAS
instances, thus providing a wide variety of options. These
deployment backends exhibit heterogeneous performance
behavior in terms of cost, energy usage, latency, etc. across
various modeling frameworks (see Figure 1). Furthermore,
these factors might be dynamic in nature as the amount and
type of workload on a particular resource change over time.

As the number of modeling frameworks and deployment
backends increases, it might be difficult to deploy a variety
of ML-based tasks across heterogenous hardware which can
leverage systemic advantages of deployment backends to

optimize for performance, cost, and energy. Further, differ-
ent kinds of (ML-based) applications might have different
kinds of requirements in terms of when requests are pro-
cessed(periodic/ event-driven/bursty), what is the primary
metric of concern for the task(i.e performance for security-
related tasks, energy for maintenance-related tasks, etc.).
Currently, there are no frameworks that provide a way to
optimize deployment strategies across heterogeneous back-
ends considering job-specific priorities.

In our work, we propose DOPE-ML, which acts as a wrap-
per around an underlying MLOps system and decides oper-
ational strategies(including deployment, runtime, etc) based
on available resources, and task level policies. We develop
an online learning framework that incorporates task capa-
bilities(i.e it can run on GPU/FaaS/Docker etc), task priori-
ties(Energy/Cost/Latency), and current resource utilization
to decide deployment strategies for all incoming tasks.

2 RELATED WORK

A lot of recent work is focused on optimizing Machine
Learning workloads in distributed clusters. Themis (Ma-
hajan et al., 2020), and Tiresias (Gu et al., 2019) provide
algorithmic approaches to optimize resource sharing for
deep learning training in GPU clusters, whereas Gavel
(Narayanan et al., 2020) provides a cluster level, policy-
based mechanism to schedule tasks on heterogeneous clus-
ters. Allox (Le et al., 2020a) utilizes task-level capabilities
to provide best-effort scheduling for training across CPUs
and GPUs, and SLAQ (Le et al., 2020b) explores quality-
runtime tradeoffs across multiple training jobs to maximize
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Figure 1. An Overview of the utility of MLOps systems. It allows deployment across a wide variety of applications, which utilize diverse
ML models to cater to user requests without developing a separate end-to-end pipeline. In the current state-of-the-art systems, decisions
for selecting appropriate deployment backend to fulfill incoming requests are manually taken by application and model developers, thus
missing opportunities for fine-grained optimizations in terms of inference latency, the cost for users, and energy efficiency.

system-wide quality improvement. All these works focus
on improving training efficiency and performance of deep
learning models across high-performance distributed plat-
forms. There are other works (Yang et al., 2018) that focus
on the problem of resource allocation on scheduling in gen-
eral learning-based workloads. Dynamo-ML (Chiang &
Chou, 2021) is the closest work to what we are trying to
achieve in our project. It proposes a set of runtime dy-
namic management techniques to handle the mixture of ML
workloads to improve Kubernetes (an MLOps) systems per-
formance across AWS GPU Clusters. However, it doesn’t
incorporate richness in deployment backends enabled by
current MLOps systems and solely focuses on performance,
i.e. not considering task level prioritization across a variety
of metrics like cost, energy, and accuracy.

3 OUR CONTRIBUTIONS

We build on the top of BentoML, a well-known MLOps sys-
tem. It is implemented in python and supports a very wide
variety of serving backends. It is primarily used to simplify
model deployment and enables serving models in produc-
tion in minutes. It provides a unified mechanism to train ML
models in a custom manner and provides framework-level
API to package models in a unified format (called bentos),
which are then manually deployed to different kinds of
backends as needed. It also supports custom cloud backends
like AWS Lambda, AWS Sagemaker, and Azure functions,
which is not in the scope of this project. For project pur-
poses, we focused more on hardware heterogeneity in terms

of CPU usage, GPU availability and usage, and memory
restrictions.

In our end-to-end system, We obtain the deployment motiva-
tion/requirement from the user as a high-level performance
policy and not as a resource requirement policy. Each de-
ployment is tagged with a user-provided SLA/Latency, accu-
racy, and energy/power requirements. Our implementation
performs an automated initial offline profiling of the given
model and learns the knobs to tune to meet the user’s perfor-
mance policy. Based on the model signature, we profile the
model’s behavior under varying workloads, and different
hardware resources using a custom offline profiler. Addi-
tionally, we also profile the model’s characteristics based
on its compute, network, and memory requirement proper-
ties. Combining both the impact data and the characteristics
data, we utilize an online learning approach to allocate and
assign just the right resources that will satisfy the user’s
performance policy, maximizing resource utilization and
optimizing for future requests.

In order to avoid Dope-ML model training from scratch,
we utilize public trace datasets from big cloud providers
like Alibaba (ali) to pre-train our model. Unfortunately,
these datasets do not provide sufficient information about
the type of user requests and virtually no information about
user priorities. We overcome this challenge by utilizing
model performance datasets like MLPerf (mlp), which pro-
vide benchmarking information of popular open-sourced
machine learning models. More details are present in Sec-
tion 4.
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Figure 2. MLP Model

Figure 3. VAE Model

The effectiveness of our methodology is evaluated by com-
paring a set of SLA, resource utilization, and power met-
rics of SOTA/widely used deployment mechanisms and our
mechanism for a given model (e.g MLPerf) and its per-
formance requirement under different workloads, available
hardware resources, and co-located jobs.

4 MODELING APPROACH

Dope-ML takes a machine learning approach to predict the
resources needed for the given application and model. The
basic requirement of the model is to take in the user require-
ments and the model characteristics as input and predict the
optimal resource requirements viz. CPU & GPU utilization
and memory usage respectively as output. We take a couple
of different approaches to meet the requirement. The first
approach is a simple vanilla regression model whereas the
second one is a Variational Auto Encoder (VAE) model.
The VAE model describes input features into a latent space
using which we can conditionally predict resources. Both
the models are similar to multi-output regression with 4
dependent output values which translate to 4 independent
training loss values during training.

4.1 Existing Datasets

Today there are several tech companies that are deploying
large ML-as-a-Service (MLaaS) clouds, often with heteroge-
neous GPUs, to provision a host of ML applications. To train
and test the proposed model, we need adequate real-world
data which is representative of the Machine Learning work-
loads in the real-world MLOps systems. Thus, obtaining
such real-world ML workloads that run on heterogeneous
machine configurations raises a number of challenges.

• Lack of Real-World Traces for ML Workloads: Ob-
taining a real-world ML Workload trace consisting of
training and inference jobs collected from large pro-
duction machines is not easily available and is not
available.

• Application-specific ML Workload Scheduling: There
is a lack of ML workload traces that capture resource
characteristics allocated to different applications. For
example, several applications such as object detection,
etc, predominantly use different Applications and have
different workload characteristics.

• Diversity in ML Model Workloads: There is also a need
for traces that capture diversity in resource characteris-
tics for the same workload trace.

• Diversity in Input for different ML Workloads: In addi-
tion, the variation in the size of the input for the same
Machine Learning model results in varying resource
consumption.

Thus, to overcome these challenges: we explored both real-
world and synthetics datasets for real-world profiling.

4.1.1 Real-World Datasets

We explored several datasets that include real-world traces
of information ML workloads from Microsoft Azure(Cortez
et al., 2017; Hadary et al., 2020) and Google Borg (Verma
et al., 2015). However, several of these traces consisted of
only the virtual machine (VM) workloads and their resource
usage data for a variety of jobs that ran in those clusters.
The Alibaba cluster trace dataset that is publicly available is
the one closest to our needs. The released trace contains a
hybrid of training and inference jobs running state-of-the-art
ML algorithms. It is collected from a large production clus-
ter with over 6,500 GPUs (on 1800 machines) in Alibaba
PAI (Platform for Artificial Intelligence) (Weng et al., 2022),
spanning the July and August of 2020.

Alibaba PAI Trace dataset overview:

The released PAI trace (Weng et al., 2022) contains the
arrival time, completion time, resource requests, and usages
on GPUs, CPUs, GPU memory, and main memory of the
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Figure 4. Overview of the Alibaba Dataset

Figure 5. Characteristics of the Alibaba dataset: Number of tasks
submitted and their instances in one week

workloads at various levels (e.g., job, task, and instance).
Table 4 shows an example of traces from the Alibaba dataset.
The trace records the arrival time, completion time, resource
requests, and usages in GPUs, CPUs, GPU memory, and
main memory of the workloads at various levels (e.g., job,
task, and instance).

Figures 5 and 6 show the tasks and instance submissions, as
well as the overall resource requests in one week during the
trace collection period. We see in Figure 5 that in addition
to daytime, midnight is also a rush hour for task submis-
sions. However, in Figure 6 we see that tasks submitted
at midnight are less compute-intensive, having only a few
instances and requesting a small amount of resources. The
Alibaba real-world trace of ML workload not only provided
information about different resource usages, but it also pro-
vided us with an interesting insight to develop our model.
However, one of the main challenges of this dataset was the
lack of availability of information about the type of applica-
tion workloads. Although the data set provided information
about the model and the GPU on which the particular trace
was run, it did not provide any information about which
type of application was using the workload.

Figure 6. Characteristics of the Alibaba dataset: Total resource
requests of running tasks in one week.

Figure 7. Overview of MLPerf benchmark Application Tasks

4.1.2 Using MLPerf to model Alibaba Workload Traces to
Application

Thus, to overcome this, we used MLPerf benchmark metrics
to model the Alibaba workload traces to a certain application
task such as Image Classification, Object Detection, etc.
MLPerf (Mattson et al., 2020) is a full system benchmark,
testing machine learning models, software, and hardware
with broad industry and academic support.

Figure 7 shows the applications of ML models that MLPerf
has benchmarked. We use these MLPerf benchmark results
to model the input data for different application tasks. Thus,
based on our explorations, our input features and output
values using the cleaned Alibaba dataset are as follows:

In features: ’task name’, ’workload’, ’no of inferences’,
’plan cpu’, ’plan gpu’, ’plan mem’

Predicted outputs: ’cpu usage’, ’gpu wrk util’, ’max mem’,
’max gpu wrk mem’, ’gpu type’

4.1.3 Synthetic Dataset from Profiling

However, as mentioned earlier, it doesn’t provide any infor-
mation on the input workload i.e number of inputs, input
size, model dimensions, etc. This makes it difficult to use
this model to fit our needs. To try using this model we as-
sumed the ’plan cpu’, ’plan gpu’ to be representative of the
workload characteristics.

To overcome the drawbacks of the publicly available
datasets, we proceed to create our own synthetic dataset
with additional necessary features as mentioned earlier. The
workflow for profiling and obtaining the synthetic dataset is
shown in figure 7.

We deploy a given model across several combinations
of inputs and deployment backends and obtain the run
characteristics. This allows us to have the deployment
model characteristics and input characteristics as input
features for our prediction model.

In features: ’app name’, ’model name’, ’model type’,
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Figure 8. Dataset obtained from Profiling

Figure 9. Online Learning Flow

’model layers’, ’model hiddens’, ’inf time’, ’input dimens’

Predicted outputs: ’cpu util’ , ’gpu util’, ’cpu mem’
, ’gpu mem’

4.2 Online Learning

We extend the pretraining approach with an online-learning
mechanism where the resource prediction model gets up-
dated during its production usage as described in figure 8.
The prediction loss is calculated using the actual run char-
acteristics and the model is updated on the fly. This allows
the model to grow as the type and nature of workload get
varied over time.

5 IMPLEMENTATION

5.1 Remote Backend Deployment

In this section, we discuss our end-to-end implementation
of Dope-ML on top of the MLOps system. In section 5.2,
We talk about user applications we selected along with Ma-
chine learning models to simulate real-life user requests,
and in section 5.1, we discuss our deployment strategy for

these user applications with Bento-ML along with Dope-ML
integration.

5.2 User Applications

To simulate real-life workload in online learning, we created
5 applications that simulate most frequently used machine
learning tasks in day-to-day life.

1. Image Classification: It is one of the most utilized,
and studied machine learning tasks in the last decade.
Image classification models are used in many areas,
such as medical imaging, object identification in satel-
lite images, traffic control systems, brake light detec-
tion, machine vision, and more.

2. Object Detection: Object tracking has a variety of
uses, some of which are surveillance and security, traf-
fic monitoring, video communication, robot vision,
and animation. Face detection and Face Recognition is
widely used in computer vision task.

3. Speech to Text: Speech recognition technologies such
as Alexa, Cortana, Google Assistant, and Siri are
changing the way people interact with their devices,
homes, cars, and jobs. The technology allows us to
talk to a computer or device that interprets what we’re
saying in order to respond to our question or command.
Speech recognition technology and the use of digital
assistants have moved quickly from our cellphones
to our homes, and its application in industries such as
business, banking, marketing, and healthcare is quickly
becoming apparent.

4. Text to Speech: Text translation allows users to see
text and hear it read aloud simultaneously. There are
many apps available, but typically as text appears on
the screen, it’s spoken. Some software uses a computer-
generated voice and others use a recorded human voice.
Very often the user has a choice of gender and accent as
well. To convert text to speech, we are using technotron
models, which are further decoded into the audio sig-
nals using wave RNN models.

5. Language Modeling: When deep learning is com-
bined with NLP, a variety of interesting applications
get developed. Language translation, sentiment analy-
sis, name generation, etc., are some of these interesting
applications. one of such interesting applications is
masked language modeling. Masked image modeling
is a way to perform word prediction that was originally
hidden intentionally in a sentence. Masked language
modeling and image modeling can be considered sim-
ilar to autoencoding modeling which works based on
constructing outcomes from unarranged or corrupted
input. These models are used where we are required to
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Figure 10. Steps involved in end-to-end deployment for all applications.

predict the context of words. Since the words can have
different meanings in different places the model needs
to learn deep and multiple representations of words.
These models have shown improved performance lev-
els in the downstream tasks such as syntactic tasks that
require lower layer representation of certain models in
place of a higher layer representation.

We have implemented these models as standalone appli-
cations and deployed them using BentoML in a remote
backend to be served as a REST API requests. Details of
remote deployment at an application level are provided in
the following section.

Dope-ML is built on the top of BentoML. It is implemented
in python and supports a very wide variety of serving back-
ends. It is primarily used to simplify model deployment and
enables serving models in production in minutes. It provides
a unified mechanism to train ML models in a custom manner
and provides framework-level API to package models in a
singular deployment format, called Bentos. Following is the
four-step process we followed to deploy our application as
a rest API.

• Stage 1(Creating Applications): We start by find-
ing appropriate pre-trained models for all applications.
For image classification, we used resnet () as a rep-
resentative application for our implementation. For
object detection, we used Single Shot Detection (SSD)
model for our implementation due to its efficient exe-
cution. For speech recognition, we utilized pre-trained
Wav2Vec models from torch audio libraries for simu-
lating speech recognition models. To convert text to
speech, we are using technotron models, which are
further decoded into the audio signals using a wave
RNN models. We have implemented Masked language
modeling using pre-trained Bert model from google.

• Stage 2(Convert Applications to Services(Bentos)):
We start by converting all pre-trained models used

in an application into BentoML models. Further,
these BentoML Models are embedded into services
with pre-processing steps which convert raw user in-
put(images/audio signals/ text inputs, etc.), and post
processing steps that involves converting raw predic-
tion into human interpretable predictions.

• Stage 3(Containerize Applications for resource
tracking): The amount of resources a service can uti-
lize is important for optimizing backend selection for
incoming requests. One way to do this is to initial-
ize each application and type of backend based on
CPU/GPU utilization into separate virtual machines.
This explodes quickly as the number of applications
or potential backends grows. Thus, we have container-
ized all applications with dockers, which can be then
initialized with resource constraints on CPU, GPU, and
memory.

• Stage 4(Applications Deployment): In our implemen-
tation, we emulated heterogeneity in hardware using a
variety of CPU, GPU, and memory constraints. Table 1
show 4 sets of backends we utilize to deploy all appli-
cation. We create these 4 backends with the rationale
of emulating high constraints and low constraint set-
tings and the impact of hardware accelerators on user
request processing. All the deployments are done on
one large VM with 64 Cores, 64GBs of RAM, and 2
NVIDIA 1080 Ti GPUs. Applications are container-
ized and assigned to a specific CPU index to remove
any task co-location possibilities. Currently, utilizing
different types of architectures is out of project scope as
bentoML does not support custom cloud environment
deployments currently.
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Backends Num CPUs Memory(in GBs Num GPUs
B1: Low Resources(w/o GPU) 2 2-4 GBs 0
B2: High Resources(w/o GPU) 4 4-6 GBs 0
B3: Low Resources(w/ GPU) 2 2-4 GBs 1 (11GBs GPU Memory)
B4: High Resources(w/ GPU) 4 4-6 GBs 1 (11GBs GPU Memory)

Table 1. The diverse set of backends deployed for applications in our implementation shows a) differentiation between constrained and
unconstrained environments and b) the impact of hardware accelerators like GPUs.

6 EVALUATION

6.1 Pretraining Evaluation

6.1.1 Using Modified Alibaba Dataset

We initially trained and evaluated our MLP model using the
modified Alibaba dataset. As mentioned in section 4.1.1,
key features such as model details and workload details (in-
put size/batch size) were not available in the dataset. The
result obtained is shown in figure 10. Scaled Mean Squared
Error (MSE) was used as the loss function and Mean Ab-
solute Percentage Error (MAPE) was used as a measure of
the regression accuracy or closeness of the prediction. With
Alibaba data, the MAPE numbers seem to be on the higher
side indicating lower accuracy. We believe this stems from
the inadequate input features in the Alibaba dataset.

6.1.2 Using the Synthetic Dataset

The proposed MLP prediction model was trained using the
synthetic dataset that is obtained as mentioned in section
4.1.3. Figure 11 shows separate CPU utilization, and mem-
ory usage prediction results. The results obtained with the
synthetic dataset are far better than the Alibaba dataset. This
proves that with more input features, the model is able to pre-
dict well. The MAPE value between the Synthetic dataset
and Alibaba dataset shows a 9x improvement in accuracy.

6.1.3 Challenges and Learnings

Loss Calculation

This resource prediction problem is similar to a multi-output
regression problem and comes with all the challenges asso-
ciated with it. Unlike a simple single value regression, the
different outputs predicted here are of different units and
scales but are interrelated. We calculate losses for each of
the different variables predicted and sum them up as the
final loss value for training. We tried several loss calcula-
tion approaches to get reasonable predictions with the MLP
model, which was quite challenging. Based on our trials,
we observed that scaled (normalized) MSE and MAPE help
the model learn better in this scenario. We plan to use this
learning to further explore different model architectures that
will increase the accuracy of the resource predictions.

Representative Data

Figure 11. Evaluation of the MLP model trained using the Alibaba
Dataset

Obtaining reliable and adequate data for fine-grained re-
source prediction is still a challenging problem. One way to
tackle this is to take an online-learning approach. This not
only provides diverse data but also makes it more realistic
as it is directly from a production workload. We were able
to implement and test the working of the online learning
workflow proposed in section 4.2. Extensive evaluation of
the online learning flow and evaluation of the eventual cost
and resource utilization savings are planned to be done as
future work.
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Figure 12. Evaluation of the MLP model trained using the Syn-
thetic Dataset

7 CONCLUSION

In this paper, we proposed Dope-ML, a wrapper around
an emerging MLOps system that can reduce the burden
of selecting an appropriate backend to fulfill user requests
for ML-based workloads. We designed an online learning
approach to predict backend requirements and implemented
our solution with BentoML and common representative
applications. Our evaluation shows that our approach could
learn request patterns and resource requirements and provide
the best backend at the user request level.
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