
Privacy-preserving Incentive Mechanisms for Resource Sharing in IoT Markets

Prasoon Patidar1, Jinding Xing2

1,2Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213

prasoonpatidar@cmu.edu1,jindingx@andrew.cmu.edu2

Abstract
Computation offloading is a promising solution for resource-
limited IoT devices to accomplish computation-intensive
tasks. In order to promote the service trading between edge
computing service providers and IoT devices, a series of
works have explored incentive mechanisms for IoT-edge
computing. However, traditional incentive mechanisms (such
as Stackelberg’s game-based approaches) expose the privacy
of participants. Moreover, the existing Reinforcement Learn-
ing (RL) based incentive mechanisms do not consider the
competition among multiple providers, which is not in line
with reality.
In this project, we model the trading between IoT devices
and computation resource providers as a multi-leader and
multi-follower Stackelberg game with consideration of mar-
ket competition and privacy preservation. In the proposed
model, providers have a limited set of resources and IoT de-
vices need to learn the best demand strategies and compete
for getting the resources. We utilized different kinds of rein-
forcement learning techniques to learn the best purchase and
pricing strategies for buyers and sellers without knowing the
private information of any market players. Lastly, we evalu-
ated the learned policies in various market scenarios, as find
best seller strategies in different settings.

1 Introduction
The amount of data generated, stored and processed is in-
creasing rapidly with the increase in the number of IoT de-
vices in the market. Various kinds of IoT devices, i.e drones,
smart cameras, smart speakers, etc are generating various
modalities of data which are further used for understanding
their respective environments, modeling human behavior,
providing inferences, and assisting in decision making. A
wide variety of computationally intensive operations, train-
ing various deep learning models is required to enable these.
It is difficult to accomplish with IoT devices due to their lim-
ited computational resources (Wang et al. 2019). One way
to tackle this problem is to offload heavy computation to
nearby devices(also called edge nodes), which have higher
compute resources, which is emerged as a paradigm of edge
computing in recent years.

These edge nodes are maintained by a service provider,
who sells compute resources at these nodes to earn revenue.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

With the growth in popularity of edge computing, there
are multiple edge nodes, maintained by different service
providers. IoT devices can demand to compute resources
from all these edge providers based on their requirements
and prices set by these providers. In this trading framework,
each provider and the IoT devices have their own interests
and are influenced by the actions of all players in the mar-
ket. The trading problem, i.e what strategies should edge
providers use to set prices for their compute resources and
what strategies should IoT devices follow for generating de-
mand, can be formulated as a Stackelberg game and solved
using game-theoretic approaches. In order to do that, every
resource provider, and IoT devices have to reveal their per-
sonal preferences to everyone. In the real-world, it might be
difficult as every player will have reservations to reveal their
preferences and capabilities in order to protect their self-
interest in this competitive setting.

In this paper, we formulate this trading problem be-
tween multiple devices and multiple providers as a series
of Stackelberg games, and present reinforcement learning-
based techniques to achieve optimal strategies by all players
in the market, without revealing any of their private informa-
tion. Our trading model is based on well-studied utility for-
mulation in a similar setting, and also incorporates provider
limitation in terms of resources capacity. In our formula-
tion, each edge provider runs their private instance of RL-
based techniques(discussed later) to decide pricing and re-
source allocation based on their experiences, and all buyers
make independent decisions to raise demand from all sell-
ers based on their individual experiences. The contribution
of our work is as follows:

• We extend the state of the art model for solving trading in-
centive problems in multi-buyer, multi-seller scenarios to
introduce provider limitations in terms of resources, and
introduce penalty mechanisms to motivate trading

• We reform studied RL-based techniques to find optimal
strategies in this extended model for providers to decide
pricing and resource allocation based on computing re-
sources demand.

• We introduce deep reinforcement learning methods, to
make our solution scale to the large size of markets, and
show that they learn optimal strategies which fare better
than any of the current methods, and are scalable.



• We analyze the performance of different methods in var-
ious kinds of market scenarios and show how different
pricing strategies can impact overall social welfare and
incentives for trading.

2 Background Literature
Reinforcement learning has emerged as a powerful tool,
which can solve NE of the Stackelberg game without the
participants revealing their privacy. (Asheralieva and Niy-
ato 2019) formulated the interaction between providers and
users as a stochastic Stackelberg game with incomplete in-
formation and proposed two exact and approximate model-
based RL algorithms to obtain NE without knowing privacy
of participants. (Yao et al. 2019) proposed an RL-based algo-
rithm to obtain NE under privacy protection. However, these
works only consider the scenario of a single provider, which
is not in line with reality where there are multiple providers
(Xiong et al. 2019). When there are multiple providers in
the market, the optimal pricing determination of provider
becomes more complicated.

(Xu et al. 2021) talks about taking privacy concerns and
competition among providers into consideration; they utilize
reinforcement learning (RL) techniques to design a privacy-
preserving incentive mechanism for multiple providers and
multiple IoT devices. The pricing and demand problem of
providers and IoT devices is a multi-leader multi-follower
Stackelberg game, in which the providers work as leaders to
determine their prices first, and then the IoT devices deter-
mine their demands as followers, and finally, leaders make
decisions based on assigned incentives. Due to privacy con-
cerns, providers and IoT devices are unwilling to disclose
their own parameters, which makes the derivation of NE be-
coming a great challenge. (Xu et al. 2021) assumes there
are M IoT devices and N edge computing service providers
in the IoT-edge computing system. Each provider j ∈ N is
equipped with rich computation capability, it can make profit
through selling computing services to IoT devices. Each IoT
device can purchase computing service from N providers
and offload its computation-intensive tasks the correspond-
ing provider.

The trading process of computing service Γij between
IoT device i and provider j can be divided into two stages:
1) In the first stage, each provider j determines the unit price
of its computing service j ; 2) In the second stage, each IoT
device i purchases xijamount of computing services from
provider j with probability θij . In the trading process, all
providers and IoT devices aim at maximizing their own util-
ities. The formulation of the utilities of providers and IoT
devices are as follow.

2.1 IoT Device Modeling
The task profile for IoT device i is (ai, Vi), where ai is re-
source occupation time for the task and Vi is the task com-
pletion utility. In the trading process, IoT device i first select
a service provider j as its seller and demands xij amount of
computing services from provider j.

rdij = Vi ln(xij − ai + e) (1)

Device i’s cost for purchasing xij amount of computing
services from provider j:

fd
ij = xijpj (2)

The net profit ξdij of IoT device i from the trading deal Γij

is defined as the difference between revenue for task execu-
tion rdij and the payment fd

ij for service demand:

ξdij = Vi ln(xij − ai + e)− xijpj (3)
Each IoT device i chooses provider j with probability θij

which is proportional to the reciprocal of the service price of
provider j:

θij =

1
pj∑

k∈N
1
pk

(4)

IoT device i can choose any provider j(j ∈ N) as its
seller, the expected utility ϕi of IoT device i in the trading
model is:

ϕi =
∑
j∈N

(Vi ln(xij − ai + e)− xijpj)

1
pj∑

k∈N
1
pk

(5)

2.2 Service Provider Modeling
For service providers, providing computation services to
IoT devices incur a cost, which include electrical payments,
hardware loss etc. Let cj denote the unit cost of computing
service for provider j.

Provider j’s cost of providing xij amount of computing
services for IoT device i is:

fe
ij = xijcj (6)

Provider j can receive a revenue reij from trading Γij :

reij = fd
ij = xijpj (7)

The net profit for provider j from trading Γij :

ϕe
ij = reij − fe

ij = xijpj − xijcj (8)
Provider j can be chosen by any IoT device i(i ∈ M)

as its provider, the expected utility θj of provider j in the
trading model is:

ϕj =
∑
i∈M

(xijpj − xijcj)

1
pj∑

k∈N
1
pk

(9)

In this scenario, each provider j(j ∈ N) adjusts its price
pj to maximize its utility θj , each IoT device i(i ∈ M) ad-
justs its service demand xi = {xij}i∈N to maximize its util-
ity ϕi.

However, in real life IoT markets, computation resource
providers have limited resources that they can’t guarantee
to satisfy all the IoT device’s resource demands. Further,
(Xu et al. 2021) tested the learned policies in small mar-
ket (2 buyers and 5 sellers). It’s unknown how the size (e.g.,
large and small) and the type of competition (e.g., Monop-
sony market and monopoly market) impact the model per-
formance.



3 The Extended Model
We introduced provider resource limitation to extend the
current model. The current model assumes that providers
have adequate computation resource, and each IoT device
can purchase any amount of computation resources xij from
provider j, which is not always true. The trading process of
computing service Γij between IoT device i and provider j
in the extended model consists of the following stages: 1) In
the first stage, each provider j determines the unit price of its
computing service pj ; 2) In the second stage, each IoT de-
vice i submit order to provider j for purchasing xij amount
of computing services with probability θij ; 3) In the third
stage, each provider j determines the amount of computa-
tion services zij can be provided to IoT device i.

In the extended trading model, as providers have lim-
ited resources, IoT device i prepare purchase order based
on task needs and the estimated amount of computation ser-
vice each provider j can provide to IoT device i. If the esti-
mated amount of computation service xij is larger than zij ,
IoT device i is unable to finish the planned task, resulting
a loss of task incomplete for IoT device i. Providers in the
extended trading model have limited computation services,
each provider decide the amount of computation services be-
ing sold to IoT device i based on its service capacity lj and
the received orders xj = {xij}i∈M from all the IoT devices.

3.1 Extended IoT Device Model
we added task incomplete loss hd

i to the expected utility ϕi

of IoT device i. Due to privacy concerns, providers disclose
their service capacity. IoT device i estimate providers’ ser-
vice capacity based on its past trading experiences f(zij)
with provider j. IoT devices only has access to their own
trading experiences and will not share their trading experi-
ences with each other. f(zij) is defined as the average com-
putation service device i bought from provider j in the past
n trading experiences:

f(zij) =

∑T−1
t=1 ztij
T − 1

(10)

Loss hi resulting from task incomplete is defined as:

hd
i = σ(f(zij)− xij)

2 (11)

The expected utility ϕi of IoT device i in the trading
model is:

ϕi =
∑
j∈N

(Vi ln(xij−ai+e)−xijpj)

1
pj∑

k∈N
1
pk

−σ(f(zij)−xij)
2

(12)

3.2 Extended Provider Model
we added service waste loss he

i to the expected utility ϕj of
provider j. If provider j failed to sell all its service to devices
in one trading, a service waste loss will incur, such loss can
be rental payment, electricity payment etc. We define service
waste as the difference between provider j’s capacity lj and
the amount of sold service z = {zij}i∈M :

he
i = λ

(
M∑
i=1

zij − lj

)
(13)

Provider j decide the amount of computation services zij
being sold to IoT device i based on its service capacity lj
and the received orders xj = {xij}i∈M from all the IoT
devices:

zij =

{
xij if

∑M
i=1 xij ≤ lj

xij − xij∑M
i=1 xij

(
lj −

∑M
i=1 xij

)
if
∑M

i=1 xij > lj

(14)
The expected utility ϕj of provider j in the trading model

is:

ϕj =
∑
i∈M

(xijpj − xijcj)

1
pj∑

k∈N
1
pk

+ λ

(
M∑
i=1

zij − lj

)
(15)

3.3 Game Analysis
The goals of this paper are to find a service purchase strategy
for each IoT device and a pricing strategy for each provider
so that all of them can benefit. Same as (Xu et al. 2021) ,
we formulate this problem as a two-stage Stackelberg game
with multi-leader and multi-follower. In the first stage of
Stackelberg game, providers work as leaders to decide their
unit price for computing services; In the second stage, IoT
device submit their order to the providers according to their
task profiles and the estimated provider’s service capabili-
ties, and provider’s unit price.

IoT device i sub-game: Given that all providers’ price
p are known, IoT device i would like to adjust its service
demand xi within the limitation of each provider’s service
capabilities for maximization its utility ϕi. Therefore, the
sub-game for IoT devices is defined as follows:

max
xi

ϕi(xi, p)

subject to xi > 0, ∀i∈M,j∈N

(16)

In the extended model, IoT devices can estimate
provider’s resource capabilities by learning from past trad-
ing experiences and make optimal purchase decisions. The
challenge lies in finding the optimal purchase decision for
each IoT device with consideration of each device’s trading
histories. In this project we adopted a heuristic approach by
using the SLSQP (Sequential Least Squares Programming)
optimizer to find the optimal purchase decision for each IoT
device.

IoT device i sub-game: Give the prices of the other
providers p−j and the responses of all IoT devices, provider
j adjusts its price pj to maximize its utility:

max
pj

ϕj(pj , p−j , x
j(p))

subject to pmin < pj < pmax, ∀j∈N

(17)



4 Learning Optimal Policies
To address the challenge caused by privacy protection, we
model the trading process as a Markov decision process and
implemented different types of RL based algorithms to learn
the optimal strategies of providers without knowing any pri-
vacy information. In the Markov decision process, the action
is provider’s price pj and the state is some function of all the
providers’ prices at time t − 1, the reward is the provider’s
utility at time t. Following subsections describe learning al-
gorithms in detail.

4.1 Tabular RL Methods
Q Learning We start by implementing most basic version
of Q learning (Watkins and Dayan 1992) for our extended
model. Although,(Xu et al. 2021) has shown that Q-learning
never converges even without any resource limitations to
providers, it serves as a baseline for other algorithms.

WoLF-PHC (Xu et al. 2021) proposed a new RL based
pricing mechanism(RLPM), in which they employ the value
iteration of RL to derive the optimal pricing policy for each
service provider. To start with, RLPM deploys independent
agents to providers, each responsible for making pricing
decisions. More precisely, each RLPM agent represents a
stochastic pricing policy to meet the stochastic nature of IoT
device demands. They used WoLF-PHC algorithm proposed
in (Bowling and Veloso 2002) for policy updates. We used
the similar formulation for our extended setting, to assess
how does our model extension to incorporate resource limi-
tations impacts performance of this state of the art algorithm.

4.2 Deep RL Methods
As count of service providers increase in market, state space
grows exponentially. Thus, any tabular RL methods, which
learns different policies for all states lead to performance
degradation. Thus, we utilize three deep learning based RL
methods to allow for policy learning in significantly large
market settings.

Deep Q Learning Deep Q-Learning(DQN) is a variation
of Q learning. Instead of tabular functions, DQN utilizes
multi-layer neural networks to approximate Q functions.
Further, Instead of using one Q function for calculating both
target and estimation, uses two separate neural networks, a
target neural network and an online neural network. At last,
instead of using last obtained experience to update Q func-
tion, DQN stores the experiences in a replay memory and
used mini-bathes by using stochastic gradient descent (Bot-
tou 2010) to minimize loss. In vanilla version, samples are
taken uniformly at random from experience replay memory.
However, by treating all samples the same, we are ignoring
a simple intuition from the real world, that is, we can po-
tentially learn more from the experiences for which the out-
comes differ more from our expectations. To leverage this
fact, we utilize prioritized experience replay (PER) (Schaul
et al. 2015) samples experiences with probability propor-
tional to the absolute difference between the target and es-
timation values for this experience which is known as TD
error.

Double Q Learning In Deep Q-learning, the target Q net-
work is used both to select best action for next state and
to calculate the target to evaluate the selected action. This
makes it more likely to select overestimated values, result-
ing in overoptimistic value estimates. Double Q learning,
(Van Hasselt, Guez, and Silver 2016) is a variation of deep Q
Learning which tries to reduce overestimation of target val-
ues by proposing a simple trick to decompose the action se-
lection from the action evaluation. More specifically, in the
double DQN, the online network is used to select an action
and the target network is used to generate the target value
for that action. We utilize this to avoid sellers to overesti-
mate their rewards in initial runs, leading to better learned
policies.

Dueling Networks In the DQN network architecture, al-
though there exist two networks, which are online network
and target network, for each of these networks, a single neu-
ral network is used to estimate the action-value function Q
that measures the value of choosing a particular action when
in a particular state. The key insight behind the dueling net-
work architecture (Wang et al. 2016) is that for many states,
it is unnecessary to estimate the value of each action choice.
To this end, in this network architecture, two separate func-
tions are estimated, a value function V that measures how
good it is to be in a particular state and an advantage func-
tion A that measures the relative importance of choosing a
particular action when in a particular state. Then, these two
functions are aggregated to estimate the action-value func-
tion Q.

The rationale behind using this kind of architecture in our
problem setting is to reduce training efforts to optimize for
provider pricing decisions which are incoherent and might
never occur in real life scenarios.

5 Experiments
5.1 Experiments Setting
The training pipeline is shown in Figure 1. In the simula-
tion, the IoT-edge computing market is composed of N ser-
vice providers and M IoT devices. Table 1 shows the de-
signed market scenarios. We designed two variations of mar-
kets: tight market and loose market, distributed market, and
monopoly markets. Compared with a tight market, in a loose
market, the providers have larger computation capabilities
and are able to provide more resources to the IoT devices. In
the distributed market, all the providers in the market have
similar computation capabilities and are initialized with a
similar amount of computation resources. In the monopoly
market, a monopoly seller is initialized with significantly
larger computation capabilities than the rest of the sellers. In
order to make comparisons across various markets, we kept
the count of buyers and sellers in different markets constant.
Further, we also keep buyer configuration constant across all
markets. We used similar setting Provider’s resource waste
penalty and IoT device’s task incomplete penalty are set as
λ = 0.2 and σ = 0.5 respectively. Providers unit resource
cost cj are set as [12, 18, 15, 14, 12]. IoT devices required
resource occupied time ai, and IoT devices task completion



Figure 1: Training pipeline-the training pipeline includes three stages: in the first stage, we initialize the training environment
(the market and the trainer). The market scenario is initialized by changing the configuration of sellers and buyers. In the
second stage, we train the RL algorithm by running the trading simulation, namely get seller price, use the price to calculate
each buyer’s demand, get each buyer’s provided resource by considering each sell’s received demands from the market and its
own resource limitations, then we can calculate buyer and seller penalties and utilities. The third stage will save the trained
policies for evaluation.

utility Vi are set as random number in [1, 2] and [10, 100],
respectively.

5.2 Evaluation Metrics
In our experiment setup, we used the following evaluation
metrics:
• Utility of IoT devices: the utility value of the IoT devices

in the market.
• Utility of providers: the utility value of the computation

resource providers in the market.
• provider prices (seller prices): each provider’s unit price

of computing service.
• IoT device’s demand: total demand of all the IoT devices

in the market.
• Provided resources: total resource provided by all the

providers in the market.
• Total penalties: total loss of IoT device’s task incomplete

loss and providers’ service waste loss. Low total loss indi-
cates the gap between the demand resources and provided
resources is small, and the market is operating in high ef-
ficiency.

• Social welfare: the total utilities of all IoT device and
providers. High social welfare indicates a good trading
market where both the providers and buyers have strong
motivation to trade.

5.3 Training Results
Impact of training algorithms:

Figure 2 shows the changes in social welfare in the train-
ing. A steady increasing social welfare during the training
indicates the algorithm is able to make the providers learn

Market Resource range Sellers Buyers
Tight market [22, 40] 5 50
Loose market [152, 175] 5 50

Distributed market [46, 62] 5 50
Monopoly market [25, 250] 5 50

Table 1: IoT-edge computing market configurations

better pricing strategies that promote market trading and
earn more utilities. DDQN and DQN only perform best in
the monopoly market. DQN-Duel is relatively robust and
performs well across all the market scenarios. In Q learn-
ing, the social welfare stops increasing at around 4000 it-
erations. Wolf-PHC learning only performs well in the dis-
tributed market, it fails to learn and shows a decreasing trend
of social welfare in the loose market.

Impact of market scenarios:
Figure 3 shows the training performance of DQN-Duel

in different market scenarios. In the loose market, the de-
manded resources and purchased resources are the same. As
the total amount of available computation resources is much
larger than the IoT devices’ needs so that the providers can
always satisfy buyers’ demands. In the rest of the market
scenarios, we can see an increasing trend both in demands
and purchases, which indicates the price based on learned
policies indeed promote trading between buyers and sell-
ers. The monopoly market shows the providers’ resource
waste penalty in the extended model adds more incentives
for providers to lower their prices and sell more computation
resources. Seller 0 and seller 4 are initialized with the same
unit resource cost, while seller 4 offers a lower price due to
its high resources capability and resource waste penalty. Ad-
ditionally, seller 2 is initialized with the highest unit resource



Figure 2: DQN-Duel training performance in different market scenarios.

Figure 3: Training results-the five rows representing DDQN,
DQN-Duel, DQN, Q learning and Wolf-PHC in different
market scenarios, respectively.

cost, so that seller 2 always has a higher price compared with
other providers in the market.

6 Policy Comparison
6.1 Comparison Setting
Figure 4 shows the head-to-head comparison pipeline. We
first initialize the sellers with policies learned by different
RL algorithms, then put all the sellers in the same market
scenarios and run the simulation to find which RL algo-
rithms learn the best price strategies. In the comparison pro-
cess, there are two types of agents in the market. The first
type of agent is the environmental agent, the second type
of agent is compare agent. The agents in each comparison
round are constituted of a group of environmental agents
and one compare agent. The environmental agents are fixed,

Figure 4: The head-to-head policy comparison pipeline.

which are randomly initialized N − 1 trainers. The com-
pare agent is initialized as the learning agent that we aim to
compare. For example, if we want to compare Q learning
and wolf-PHC learning, we will initialize the compare agent
with policies learned by Q learning trainer and wolf-PHC
trainer, respectively. Then will run the simulation twice, the
first run will be environmental agents and Q learning trainer,
the second run will be the environmental agents and wolf-
PHC trainer.

6.2 Comparison Results
Impact of seller computation capability on learned poli-
cies

Figure 5 shows different sellers’ trading performance un-
der the same learned policies. The same learned policy has
different performances on sellers with different computation
capabilities. Such differences can be significant under cer-
tain market scenarios. For example, in the loose market and
distributed market, policy learned by dueling networks is the
best policy for the small sellers (seller with fewer computa-
tion resources but the same unit resource cost), the policy



Figure 5: Comparison of learned policies in different market scenarios-the compare agent in the first row has less computation
resources compared with the compare agent in the second row. In the monopoly market, the compare agent in the second row
is the monopoly seller.

learned by Q learning is the best policy for large sellers. In
the tight market, dueling networks perform best on all the
sellers.

Impact of market scenarios on learned policies
Seller utilities. As shown in Figure 5, dueling networks

is the most robust learning algorithm across different market
scenarios. Especially, for small sellers, policy learned by the
dueling networks almost always gets the largest seller utili-
ties. For large sellers, policy learned by the dueling networks
can also guarantee seller utility that is higher than the market
average. To note that, in a monopoly market, the market av-
erage utility is much lower than the utility of the large seller.
As the large seller is the monopoly seller, it can sell more
resources and get a utility that is higher than the market av-
erage.

Social welfare. Figure 6 shows the social welfare of the
large seller in different market scenarios. In different mar-
ket scenarios, the best policy that gives the highest social
welfare varies. Q learning, wolf-PHC learning, double Q
learning, and deep Q learning have the highest social wel-
fare in the loose market, tight market, distributed market,
and monopoly market, respectively. Deep Q learning has the
lowest social welfare in the loose market, tight market, and
distributed market. Another interesting observation is that,
in the tight market and distributed market, the policy that
gives the highest seller utilities does not lead to the high-
est social welfare. Dueling networks and Q learning gives
the highest seller utilities in the tight market and distributed
market. However, wolf-PHC and double Q learning have the
highest social welfare in these two market scenarios.

Seller price. Figure 7 shows the compare agent’s seller
price in different market scenarios. Deep Q learning has
the highest price in the loose market, tight market, and dis-
tributed market, and lowest price in the monopoly market.
The price strategies learned by other agents (except for deep
Q learning) are well concentrated and did not show many
fluctuations in the comparison.

Figure 6: Social welfare of the large seller in different mar-
ket scenarios.

7 Conclusion
The number of IoT devices is growing rapidly and these de-
vices usually produce or collect a large amount of raw data.
It is challenging for these devices to accomplish data pro-
cessing due to their limited computation resources. This pa-
per, based on previous work, designed an incentive mech-
anism that aims to promote the trading between service
providers and IoT devices with the consideration of privacy-
preserving and providers’ resource limitations.

In this paper, we formulated the trading between IoT
devices and computation service providers as a series of
Stackelberg Game and adopted reinforcement learning
techniques to learn the optimal strategies for market players.
Our experiment results show that dueling networks are
robust across all market scenarios which almost always



Figure 7: Seller price of the large seller in different market
scenarios.

.

gives the highest seller utilities. Dueling networks also
have higher than market average social welfare in the
head-to-head comparison. Moreover, we also found that the
seller computation capability and market scenario impact
the choice of best policies. We have open-sourced our
training, evaluation, and policy comparison frameworks
(https://github.com/prasoonpatidar/multiagentRL-resource-
sharing) to promote more exploration and studies across
various other kinds of markets and allow the development of
other training algorithms for our problem setting. In future
work, we can extend the model by introducing random
explorations in buyers’ decisions of choosing the provider.

References
Asheralieva, A.; and Niyato, D. 2019. Learning-based mo-
bile edge computing resource management to support public
blockchain networks. IEEE Transactions on Mobile Com-
puting .

Bottou, L. 2010. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of COMPSTAT’2010,
177–186. Springer.

Bowling, M.; and Veloso, M. 2002. Multiagent learning us-
ing a variable learning rate. Artificial Intelligence 136(2):
215–250.

Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952 .

Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.

Wang, J.; Ni, M.; Wu, F.; Liu, S.; Qin, J.; and Zhu, R. 2019.
Electromagnetic radiation based continuous authentication
in edge computing enabled internet of things. Journal of
Systems Architecture 96: 53–61.

Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for deep
reinforcement learning. In International conference on ma-
chine learning, 1995–2003. PMLR.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4): 279–292.
Xiong, Z.; Kang, J.; Niyato, D.; Wang, P.; and Poor,
H. V. 2019. Cloud/edge computing service management
in blockchain networks: Multi-leader multi-follower game-
based ADMM for pricing. IEEE Transactions on Services
computing 13(2): 356–367.
Xu, H.; Qiu, X.; Zhang, W.; Liu, K.; Liu, S.; and Chen, W.
2021. Privacy-preserving incentive mechanism for multi-
leader multi-follower IoT-edge computing market: A re-
inforcement learning approach. Journal of Systems Ar-
chitecture 114: 101932. ISSN 1383-7621. doi:https://
doi.org/10.1016/j.sysarc.2020.101932. URL https://www.
sciencedirect.com/science/article/pii/S1383762120301910.
Yao, H.; Mai, T.; Wang, J.; Ji, Z.; Jiang, C.; and Qian, Y.
2019. Resource trading in blockchain-based industrial Inter-
net of Things. IEEE Transactions on Industrial Informatics
15(6): 3602–3609.


